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� Abstract
Microscopy images must be acquired at the optimal focal plane for the objects of
interest in a scene. Although manual focusing is a standard task for a trained observer,
automatic systems often fail to properly find the focal plane under different microscope
imaging modalities such as bright field microscopy or phase contrast microscopy. This
article assesses several autofocus algorithms applied in the study of fluorescence-labeled
tuberculosis bacteria. The goal of this work was to find the optimal algorithm in order
to build an automatic real-time system for diagnosing sputum smear samples, where
both accuracy and computational time are important. We analyzed 13 focusing
methods, ranging from well-known algorithms to the most recently proposed func-
tions. We took into consideration criteria that are inherent to the autofocus function,
such as accuracy, computational cost, and robustness to noise and to illumination
changes. We also analyzed the additional benefit provided by preprocessing techniques
based on morphological operators and image projection profiling. ' 2012 International

Society for Advancement of Cytometry
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TUBERCULOSIS (TB) is an airborne infectious disease caused by the microorganism

Mycobacterium tuberculosis. It is the main cause of death by any infectious disease

today. In addition, it is endemic in developing countries and is considered an emer-

ging disease in developed countries. According to the World Health Organization, a

third of the world’s population (1722 million people) carries this microorganism.

A person can easily become infected with TB by inhaling tiny particles of infected

sputum from the air. For this reason, early diagnosis may help in preventing

transmission. The diagnosis can be made using indirect tests such as chest X-rays and

the Mantoux test, or by direct observation of sputum smears. The latter technique

can be used either with conventional microscopy (Ziehl-Neelsen stain) or with

fluorescence microscopy (Auramine stain), which is more sensitive (1). Although the

technique provides quick results, it requires highly trained personnel who may take

up to 5 min per sample (2). Automation of the detection process could facilitate

an early diagnosis, not only by saving time for specialists, but also by improving the

sensitivity of detection as a consequence of exploring a potentially much higher

number of fields.

Accurate focusing is critical in any automatic TB diagnostic system. Many

autofocus algorithms have been proposed (3–7), although their accuracy depends

to a large extent on the type of images being analyzed (3), and a universally valid

solution for this particular problem does not exist. In particular, image features of
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City, México
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fluorescence microscopy are very different from those of

conventional or phase contrast microscopy. Furthermore, the

possible usefulness of combining autofocus algorithms with

preprocessing strategies such as median or morphological

filtering has not been sufficiently validated. In this kind of

images, the presence of debris in the samples may lead to

focusing errors. Therefore, a preprocessing filtering stage may

mitigate such effects, although the increase in computational

cost of this stage has yet to be justified.

We assessed 13 autofocus algorithms used in sputum

smear fluorescence images with the purpose of detecting TB

bacilli using an automated setting: a motorized microscope

attached to a computer that controls the focus. To require

minimal changes to these settings, the computer also performs

the functions of focus controller and image classifier. The

assessment tries to account for the variability of these images

in a real clinical environment (e.g. differences in luminosity

depending on which sample region is being explored, time

since staining, number of bacilli present, and artifacts). The

variables evaluated are algorithm accuracy and computation

time. We also analyzed how the algorithms performed when

different preprocessing filters were applied and different levels

of noise and nonhomogenous illumination were added.

MATERIALS AND METHODS

Sample Preparation

The specimens were decontaminated using the N-acetyl-

L-cysteine-sodium hydroxide procedure, and the sediment

obtained was used for microscopy (Auramine smear) and cul-

ture on a solid slant (Löwenstein-Jensen Pyruvate) and a

Mycobacterial Growth Indicator Tube (MGIT, Becton Dickin-

son). Smears were first air-dried and fixed using heat (1008C
for 1 h). Auramine-O (1:1000 solution, in ethanol, phenol,

and distilled water) was then flooded onto the slides to stain

mycolic acid. After 15 min, the slides were washed with water

and decolored using HCl (0.5% in ethanol). After 3–5 min,

slides were again washed in water before being counterstained

with thiazine red (0.5%) for 3 min. Slides were washed for the

last time and air-dried.

Auramine smears were considered positive if at least three

acid-fast bacilli were observed on the slide; the microscopist

reviewed approximately 75–90 fields per slide before classing

the smear as negative.

In cases of clinical suspicion, when the auramine

smear was negative, M. tuberculosis was detected using

the Amplified Mycobacterium Tuberculosis Direct test

(Gen-Probe, bioMérieux).

Isolates of mycobacteria were identified by DNA probes

(AccuProbe; Gen-Probe) for the M. tuberculosis complex strains,

and an analysis of susceptibility to first line antituberculous drugs

was performed using the Bactec MGIT 960 (Becton Dickinson)

according to the manufacturer’s procedures.

Hardware and Image Acquisition

A Nikon Eclipse 50i fluorescence microscope with a

Nikon CFI Plan Fluor 203 lens (NA, 0.50; WD, 2.1 mm) was

used. A ProScan motorized stage (Prior Scientific Instruments,

Cambridge, United Kingdom) was attached to the microscope.

The stage consisted of a mobile platform on the XY plane and

a motorized control device adapted to the microscope focus

knob (Z-axis) with a resolution of 0.1 lm per step (1 motor

revolution equals 1000 steps). Images were acquired using a

QImaging Retiga 2000R camera (QImaging, Surrey, Canada)

with a resolution of 1600 3 1200 pixels. Exposure time was

0.25 s. The green channel of every image was stored as an 8-bit

gray scale TIFF file. Since fluorescence information is more

noticeable in the green channel than in any other, the red and

blue channels were ruled out.

The software tools for controlling microscope XYZ move-

ments and for implementing the autofocus functions were

developed in Matlab 7.6.0 (The Mathworks, MA). The soft-

ware was executed on an Intel Core2 QUAD 2.40 GHz 4 GB

RAM computer using the Windows Vista operating system

(Microsoft, WA).

Assessment of Focus Accuracy

Three hundred of 1037 stacks belonging to 10 different

patients previously diagnosed at Hospital Universitario

Gregorio Marañón were randomly chosen. Each stack con-

sisted of 20-image stacks acquired at different focus points

using a constant Z step (Dz 5 3 lm) over the same field. The

chosen step along the Z-axis was small enough for the visual

difference between any two images around the focus point to

be barely appreciable by a human observer. These 300 stacks

are available for free for research purposes on the URL http://

biig.uc3m.es/autofocus_stacks/.

Because of the small Z-axis step used, identification of

the optimally focused image by human observers may not

have a single solution, as different observers could choose

slightly different images around the optimal focus plane. A

single observer determined the optimal focus point used as

the reference for the assessment of the automatic algorithms.

To compare those algorithms with the human observer, a

random sample of 30 stacks was focused by another four
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observers and the overall standard deviation of the disagree-

ment with the first observer was computed. This standard

deviation was used as a threshold to assess whether a given

algorithm focuses like a human being would do.

Autofocus functions were computed for each image of

the stacks and total computation time was recorded. The max-

imum of the function for each algorithm was considered as

the focus point, and the difference with the manually obtained

focus point was considered the focus error. In addition, the

percentage of correctly focused images, that is, those below the

acceptance threshold, was computed.

For the five most accurate algorithms, the full width at

half maximum (FWHM) and the peak-valley ratio for the

function values were also computed. The function values were

averaged in those stacks in which these five algorithms agreed

at a given focus point.

Autofocus Algorithms

Thirteen different autofocus functions were used and

evaluated:

� Vollath’s F4 and F5 (VOL4, VOL5). This function is defined

in (6):

FVOL4 ¼
XM�1

i¼1

XN
j¼1

gði; jÞ � gði þ 1; jÞ �
XM�2

i¼1

XN
j¼1

gði; jÞ � gði þ 2; jÞ

ð1:1Þ
where g(i, j) is the gray level of pixel g located at coordinates

i, j and N and M are the image dimensions. This function

computes the image autocorrelation and is reported as

robust against noise and efficient in computational terms.

A similar function is Vollath’s F5 (7), which suppresses high

frequencies:

FVOL5 ¼
XM�1

i¼1

XN
j¼1

gði; jÞ � gði þ 1; jÞ �MN�2

g ð1:2Þ

where �g is the mean pixel value in the image.
� Log-histogram (LOG): Ref. (8) proposed a new method that

made use of the brightness level of the image through a log-

arithmic transformation of the histogram. This measure-

ment is based on the assumptions that the bacilli contribute

solely to the upper part of the histogram, because they are

brighter than background and other possible objects. This

algorithm proposes the use of the image histogram modi-

fied by a logarithmic function as follows:

FLOG ¼
X
l

ðl � ElogðlÞÞ2 � logðplÞ ð1:3Þ

where

ElogðlÞ ¼
X
l

l � logðplÞ ð1:4Þ

where l is the gray level in the histogram (from 0 to 255)

and pl is the probability for each gray level.
� Gaussian filter (GS): Ref. (3) published a function based on

a gradient filter derived from the convolution of the image

with a first-order Gaussian derivative.

FGS ¼ 1

MN

X
i;j

½gði; jÞ � Giði; j; rÞ�2 þ ½gði; jÞ � Gjði; j; rÞ�2

ð1:5Þ
To save processing time, it is possible to calculate its value in

only one direction:

FGS ¼ 1

MN

X
i;j

½gði; jÞ � Giði; j; rÞ�2 ð1:6Þ

In the previous equation, Giði; j; rÞ is the first-order

Gaussian derivative with a scale of r in the i direction. The

value of r depends on the elements of the image, and for

bar-like structures this value should conform to r � d
2

ffiffiffi
3

p
,

where d represents the thickness of the bar (the bacillus in

this case), which should be chosen between 0.2 and 0.5 lm.

The tested value for r was 0.3 (GS03). Values of 1.0 (GS1)

and 2.0 (GS2) were also tested to assess the behavior of this

function with wider filters.

� Energy of the image Laplacian (LAP): This focus measure-

ment was originally used to find focusing errors caused by

noise (5). It has desirable properties such as simplicity, rota-

tional symmetry, and elimination of unnecessary informa-

tion. The algorithm convolves a discrete Laplacian mask

with the input image as follows:

FLAP ¼
X
i;j

½gði � 1; jÞ þ gði þ 1; jÞ þ gði; j � 1Þ

þ gði; j þ 1Þ � 4gði; jÞ�2 ð1:7Þ

� Variance of the image (VAR): This focus measurement com-

putes variations of pixel intensities and uses the power

function to amplify larger differences from mean image in-

tensity (4):

FVAR ¼ 1

MN

X
i;j

½gði; jÞ � �g �2 ð1:8Þ

A modification of this same function involves a normaliza-

tion step by using the mean brightness (NVAR):

FNVAR ¼ 1

MN�g

X
i;j

½gði; jÞ � �g �2 ð1:9Þ

� Energy of the image (PS): This focus measure adds up all

image intensities squared:

FPS ¼
X
i;j

gði; jÞ2 ð1:10Þ

� Threshold (TH): This focus measure counts the number of

pixels above a determined threshold, previously chosen

according to the overall image brightness:
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FTH ¼
X
i;j

ðFðgði; jÞÞ; F ¼ 1 if gði; jÞ > H
0 otherwise

�
ð1:11Þ

The threshold Y was set at 80% of the maximum bright-

ness value in the whole stack.
� Weighted histogram (WHS). Focused images in fluorescence

illumination exhibit a larger proportion of pixels with

bright gray levels than unfocused images. Therefore, this

procedure is based on a weighted image histogram without

introducing a constant threshold (9). The procedure was

performed empirically by multiplying the fifth root of

the number of pixels of each gray level h(i) by the fifth

power of this gray level i and dividing by 1015. The sum of

all transformed gray values was then used as a focus mea-

surement.

FWHS ¼
X
l

5
ffiffiffiffiffiffiffiffi
hðlÞ

p
� l5 � 10�15 ð1:12Þ

� Hu’s moments (HU): These moments, originally used as

invariants, were recently used for the focus measure design

in several ways (10). Here, we used a measurement based on

a linear combination of second-order moments, as follows:

FHU ¼ l20 þ l02 ¼
X
i;j

ði � icÞ2 � gði; jÞ þ
X
i;j

ðj � jcÞ2 � gði; jÞ;

ð1:13Þ
where ic ¼ c10

c00
and jc ¼ c10

c00
are, respectively, the horizontal and

vertical centroids of the image, defined as:

cpq ¼
X
i;j

ip � jq � gði; jÞ ð1:14Þ

Hu’s moments were computed using tiles of 20 3 10 pixels

over each image of the stack. The results were averaged and

used as the focus measurement. Although we present data

for tiles measuring 20 3 10 pixels, other tile sizes offered

similar results.
� Tenengrad (TEN): This algorithm convolves an image with

Sobel operators and sums the square of all the magnitudes

greater than a threshold (11,12).

FTEN ¼
X
i;j

½gði; jÞ � S�2 þ ½gði; jÞ � S0�2; ð1:15Þ

where S and S0 are Sobel’s kernel and its corresponding

transpose, respectively:

S ¼
1 0 �1

2 0 �2

1 0 �1

2
4

3
5 ð1:16Þ

Although the original implementation of the Tenengrad

algorithm uses a threshold, we decided to include all the

pixels in the summation.
� Absolute Tenengrad (ATEN): This focus measurement is

similar to the previous one, but here the absolute value of

the gradient coefficients is taken in order to reduce the

computational cost. This technique is known as absolute

gradient and was proposed in (13).

FATEN ¼
X
i;j

jgði; jÞ � Sj þ jgði; jÞ � S0j ð1:17Þ

� Discrete cosine transform (DCT): According to (14), focus-

ing techniques based on band-pass filters perform well. In

this algorithm, images are divided into blocks of 40 3 40

pixels, DCT is applied, and the sum of four band-pass diag-

onal bands representing mid and high frequencies is chosen

(15):

cðp; qÞ ¼ 1

16

X
i;j

gði; jÞcos pð2mþ 1Þp
2M

� �
cos

pð2nþ 1Þq
2N

� �

ð1:18Þ

� Midfrequency-DCT (MDCT): The effect of the band-pass

DCT coefficients on the focus measure has been analyzed by

(16). The same authors proposed a 4 3 4 DCT operator to

extract the central coefficient c(4,4), which is used as a focus

measurement. The MDCToperator can be calculated as:

FMDCT ¼
X
i;j

ðgði; jÞ � OMDCTÞ2; ð1:19Þ

with

OMDCT ¼
1 1 �1 �1

1 1 �1 �1

�1 �1 1 1

�1 �1 1 1

2
664

3
775 ð1:20Þ

� Total variation (TV): This algorithm is essentially an L1
norm of the image derivatives in both directions (17).

Therefore,

FTV ¼
X
i;j

jgxði; jÞj þ jgyði; jÞj ð1:21Þ

where gx and gy are the derivatives in the x and y directions

of the image, respectively.

Filtering

The effect of different preprocessing techniques on

the final result was tested by applying several filters, namely,

2 3 2, 4 3 4, and 8 3 8 median filters, as well as a morpho-

logical top-hat (18) algorithm using a 9 3 9 pixel square

mask. The goal of the median filter is to reduce noise on the

image. The top-hat filter is used to remove elements bigger

than bacilli. This technique was previously assessed by (19),

with good results, although in this study a larger number of

autofocus functions are evaluated. This morphological opera-

tor performs a successive opening and closing operation with

a squared (in our case) structural element which has the prop-

erty of removing small objects and preserving bigger ones. The

result is then subtracted from the original image, providing a

final image with the bigger objects removed. As a side effect of

this kind of filtering, the shape of small particles could be
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modified. This effect is not relevant for the purpose of this

study, since the desired result is merely the optimal focus

point and the image is not further processed.

The median and top-hat filters were applied to the stored

green-channel grayscale images, and the time used by each fil-

tering method was recorded.

Profile Projection

Because top-hat filtering is computationally expensive, it

should preferably be applied only to those image stacks with

large objects. To determine whether it should be applied, we

propose the application of a profile projection method that

binarizes the image and projects the pixels in vertical and hori-

zontal directions. The largest size of the particles is estimated

as the length of the contiguous projected values that are

greater than zero. However, size estimation could fail if the

binarization process is inappropriate or if there is a high

density of small particles. To reduce the likelihood of such a

problem, the binarized image is projected in rectangular tiles

in both horizontal and vertical directions. The projection of

these profiles can be considered as a measure of blob density

as follows:

d
ðhÞ
p ðnÞ ¼

Xðpþ1Þ:L

i¼1þp:L

Tsb ½gði; jÞ�; p ¼ f0; 1; :::g

d
ðvÞ
p ðnÞ ¼

Xðpþ1Þ:L

j¼1þp:L

Tsb ½gði; jÞ�; p ¼ f0; 1; :::g
ð1:22Þ

where dp
(h) and dp

(v) are the p-th horizontal and vertical den-

sity of the binarized profiles and L is the shorter tile distance.

Note that the aim here is not to calculate precisely the areas

and widths of the particles, but to obtain an estimate of the

particle size in order to decide whether or not top-hat filtering

should be applied. Figure 1 shows a scheme of the profiling

projection method. In this study, we used L 5 400, (e.g. tiles

measuring 400 3 600 pixels and 400 3 1200 pixels), a binari-

zation threshold of sb 5 100, and a threshold that gears the

application of the top-hat when at least one of the estimated

sizes is greater than ss 5 80.

Noise

To assess the robustness of the autofocus functions

against noise, they were evaluated again with the addition of

Poisson noise to the original images with no filtering process.

This addition was implemented using the Matlab poissrnd

function with several k values (k 5 10, 20, 45, and 90).

Nonhomogeneous Illumination

The behavior of the autofocus functions was also tested

under conditions of nonhomogeneous illumination. This was

simulated using a luminance gradient as a quadratic polyno-

mial function represented as a gray-level image which multi-

plied the original images. Different maximum intensity values

were used (0.8, 0.9, and 1.0); the minimum was always 0.

RESULTS

The standard deviation of the focus position for the

human observers was 3.60 lm. Therefore, the maximum error

value above which the image is considered not properly

focused (acceptance threshold) was set at 7.20 lm. That means

a difference less or equal to 2 motor steps.

The errors for each autofocus function are shown in

Figure 2a. When no prefiltering is used, several methods focus

Figure 1. Schematic representation of the profiling method for estimating particle sizes. The image is binarized using the threshold sb and
then divided into horizontal and vertical rectangular tiles. The size of the particles is estimated as the length of the contiguous projected

values greater than zero. If at least one size is greater than a threshold ss, then the top-hat filter is applied. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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below the maximum allowed error: MDCT (error 5 2.69 �
4.11 lm), VOL4 (3.99 � 5.55 lm), TEN (4.21 � 5.42 lm),

and GS03 (4.40 � 5.50 lm).

The median filters did not improve the results for a mask

size of 2 3 2. The results were worse in the case of mask sizes

of 4 3 4 (7.98% of the samples fell outside the focus zone)

Figure 3. Mean time required by each autofocus algorithm per stack. Please refer to the Supplementary Information for numerical

data.

Figure 2. (a) Mean error for each algorithm and preprocessing method. The horizontal line marks the acceptance threshold used.

(b) Percentage of images correctly focused. Please refer to the Supplementary Information for numerical data.
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and 8 3 8 (37.26% worsening). In any case, none of these

filters noticeably improved the results. In addition, the

improvement was small or nonexistent for the algorithms

with the best performance. Therefore, these results are not

included in this Figure 2.

When top-hat filtering was applied, all the autofocus

functions reduced their error below the acceptance threshold,

except for DCT (6.79 � 7.92 lm) and HU (6.04 � 7.00 lm).

In addition to the mean error, a more relevant metric is

the percentage of correctly focused images (focused below the

acceptance threshold). In Figure 2b, we can see that the most

accurate algorithms were MDCT (96.67%), TEN (89%),

VOL4 (89%), GS03 (86.67%), and TV (85.67%).

The computation times for each algorithm are shown in

Figure 3. Top-hat filtering took 7.42 � 1.29 s per stack, and

the profile projection technique took 6.48 � 3.97 s per stack.

Figure 5. Normalized values for the average value of the five most accurate autofocus functions. The numbers in parenthesis represent

the FWHM in lm and the peak-valley ratio.

Figure 4. Percentage of correctly focused stacks when different levels of noise are added to the original images. Please refer to the Supple-

mentary Information for numerical data.
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No differences were found in the computation time required

by the different autofocus functions depending on whether

prefiltering was applied or not.

The results for each algorithm with different levels of

noise present in the images can be seen in Figure 4.

No differences in algorithm performance were detected

when nonhomogenous illumination was simulated. Most

showed a slight decrease in accuracy (\5%), independently of

the maximum illumination gradient used. Accuracy was

slightly increased for four algorithms: LOG (7.33% increase),

PS (3%), NVAR (4%), and WHS (14%). This increment was

not independent of the maximum gradient; the values shown

here belong to the maximum improvement achieved for a gra-

dient of 0.8.

The results of the FWHM and peak-valley ratio study

are shown in Figure 5 for MDCT, VOL4, TEN, GS03, and

TV. The normalized function values were calculated by

averaging 30 stacks in which all the functions agreed on

the same focus point (located 27 lm from the beginning

of the stack).

The characteristic effects of top-hat filtering on an image

can be seen in Figure 6. The effects of the different types of

filtering on the function values can be seen in Figure 7 (VOL4

sample).

DISCUSSION

Accurate focusing is vital for correct identification of

objects under the microscope and, consequently, for an auto-

mated diagnostic system. Many previous works compare the

efficiency of different autofocus algorithms. In this study, we

took into account several aspects that are relevant for a real-

time application: variability of the fluorescent microscopy

images, addition of noise, illumination changes, and prefilter-

ing processes. The final goal of this study was to assess the

appropriateness and robustness of a series of focusing algo-

rithms and preprocessing techniques to select one for a future

automatic diagnostic application. Although more autofocus

algorithms could have been included, the current selection

offers a good balance between old and new techniques that are

most commonly used.

With our data, VOL4, MDCT, and TEN achieved the best

results with non-prefiltered images. When all the evaluated

algorithms were ordered by accuracy, the resulting ranking

was consistent with those of previous reports (5,6,20), consid-

ering that not all of them evaluated the same functions.

The median filter was included in our tests because it is a

fast and reliable algorithm for removing noise without impair-

ing resolution. Our data showed it to have almost no effect on

the accuracy of the tested algorithms when the mask is small

and a negative effect (loss of accuracy) when the mask size

increased to 8 3 8 pixels. Therefore, its use is discouraged for

the type of images we work with.

Another type of filter that has proven successful is the

morphological top-hat filter, which, in our case, was used to

eliminate large objects from the image and leave only the

smaller bacilli (Fig. 6). This filter increased the accuracy of all

the algorithms assessed. The explanation for the poor accuracy

of several focusing functions is the presence of large elements

that are not the desired focus target; only those algorithms

Figure 6. Effects of top-hat filtering. The original image (top)

presents large elements that are removed (bottom) when top-hat

filtering is used.

Figure 7. Effects of top-hat filtering on the normalized values for

VOL4 for the same stack used in Figure 6. The vertical line marks

the focused image.
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that are more sensitive to small elements performed better.

Once the top-hat filter eliminated the large structures, the per-

formance of the focusing functions improved. An example of

the evolution of the function shape depending on the filtering

method used can be seen in Figure 7 for VOL4. However, the

high computational cost of this filter makes it unfeasible in a

true real-time detection system. To overcome this drawback,

we propose a new method for estimating particle size in the

image, based on projection profiling of binarized and tiled

images, which helps to reduce the computational cost by

about 19% with low error impairment (Fig. 2). This reduction

is not effective enough for a real-time system, so the use of

field programmable gate arrays or graphics processing units

could be considered in the future to increase overall speed. In

any case, the improvement in computational cost may not be

substantial enough to justify its implementation if a fast,

hardware-based solution is available.

Robustness of the focusing algorithms regarding noise is

important when working in low signal-to-noise conditions,

such as poor illumination or reduced acquisition times. To

evaluate performance under such situations, we tested the

effect of adding Poisson noise and nonhomogeneous illumina-

tion. When the noise level is low (k � 20), TEN, along with

GS03, is the most robust algorithm—in terms of noise—of all

those with good results. When using higher noise levels, the

accuracy of all the algorithms is severely affected.

In the presence of nonhomogeneous illumination, the

results did not change noticeably. This supports the idea that

the tested algorithms are quite robust and independent of the

light source. The LOG, PS, and WHS algorithms actually

increased their accuracy when the illumination was nonhomo-

geneous; however, considering that their accuracy under

normal conditions is very low, this particular result lacks

relevance. In the case of LOG and WHS, which are the two

functions that showed the largest increase in accuracy, the

results did not change, probably because of the modification

of the histogram, given that both these methods use it to com-

pute their value for each image.

The objective of this study was to progress to an easy and

rapid automatic focusing system for an entire sample, for

instance, by defining efficient whole-slide scanning strategies

(e.g. using a coarse to fine search procedure or other optimal

searching method such as the Fibonacci search). To accom-

plish this, it is important to notice that even when several

functions showed similar degrees of accuracy, some of them

displayed FWHM and the peak-valley ratios that make them

more suitable for an optimization process, as seen in Figure 5.

In this study, VOL4 and TEN presented a higher ratio, and

MDCT and VOL4 were the functions that more rapidly

converged to the focus point. TV, on the other hand, is a slow

function, and the maximum and the minimum values are

close.

CONCLUSIONS

Several autofocus algorithms were assessed under

different conditions of illumination and noise in fluorescence-

labeled Mycobacterium tuberculosis samples. For those applica-

tions where the computing time is important, we recommend

the use of MDCT or VOL4, as they showed the best accuracy

and had a low computational cost. Median prefiltering did

not improve the results. Small-object selection by top-hat

morphological preprocessing increased accuracy, although at

a computational cost that is not affordable for a real-time

application.
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