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a b s t r a c t

We propose the steered Hermite transform to analyze and capture visual patterns from textures regard-
less their orientation. Visual texture information is locally described as one dimensional patterns by
steering the Cartesian Hermite coefficients according to the energy direction; therefore, no predefined
orientation selective filters are required. We evaluate classification accuracy of some texture features
individually. During the training stage, a filter selection strategy based on the augmented variance ratio
analysis of the training features is employed in order to determine the filters that provide better classi-
fication accuracy and reduce computational costs during the classification stage.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Texture can be described as a set of repetitive patterns within a
spatial neighborhood. The extent of such spatial neighborhood de-
pends upon the scale or resolution at which the texture is per-
ceived. Many research areas and even more industrial
applications use texture features to segment (Mao and Jain,
1992), retrieve (Manjunath and Ma, 1996), classify (Mao and Jain,
1992; Ojala et al., 2002) and evaluate quality requirements of some
products (Arivazhagan et al., 2006).

In texture analysis it is often desired to obtain rotationally
invariant texture features because in most cases textures are pre-
sented with orientation variations. Early methods realizing the
importance of rotation invariance used polarograms (Davis,
1981). Model based methods proposed a circular symmetric auto-
regressive model (Kashyap and Khotanzad, 1986), Gaussian Mar-
kov random field models (GMRF) (Cohen et al., 1991) and
combination of quadrature mirror filters with hidden Markov mod-
el (Chen and Kundu, 1994).

Although wavelets by nature are not rotation invariant, wave-
let-based methods have recently performed rotation-invariant
texture analysis based on preprocessing stages, by transforming
the input texture to a rotation invariant form through polar (Pun
and Lee, 2003) or Radon transformations (Jafari-Khouzani and Solt-
anian-Zadeh, 2005). These transformations involve many free
parameters whose optimal values need to be found. Gabor wave-
lets have also been proposed. In this case, several techniques have
been proposed in order to obtain rotation-invariant features. These
include post-processing stages such as circular shifts over the

feature map according to a dominant orientation (Rallabandi and
Rallabandi, 2008; Montoya-Zegarra et al., 2008) and addition of
the different directional coefficients at each scale of analysis
(Han and Ma, 2007). Other wavelet-based methods use combina-
tion of phase and magnitude information obtained from complex
Daubechies wavelets (Chu and Chan, 2009) and show high accu-
racy after a feature selection procedure.

Other methods propose texture descriptions invariant not only
to rotation but scale and perspective changes (Varma and Zisser-
man, 2003; Lazebnik et al., 2005; Zhang et al., 2007). The method
presented in (Varma and Zisserman, 2003) assumes that a pixel
depends only on its neighborhood and is independent of the rest
of the image. Neighborhood descriptors based on Markov random
fields are clustered using the k-means algorithm, thus producing
a set of representative textons per texture class. These textons
are recorded in a texton dictionary which records all the cluster
centers (textons) for all samples within the dataset. In order to
build a representation of a new texture, the texton dictionary is
used to label images. The methods presented in (Lazebnik et al.,
2005; Zhang et al., 2007) use features extracted from a sparse set
of keypoint locations or patches by first extracting salient image
structures using local region detectors such as Harris and Laplace
and rotationally invariant descriptors such as spin images and RIFT.
Testing challenging datasets with the above methods show high
accuracy in retrieval and classification experiments. However,
these are highly computational demanding methods since the free
parameters may include the patches size, histogram computations
(e.g. 100-dimensional and 32-dimensional histogram descriptors
per image patch (Lazebnik et al., 2005)) and a clustering algorithm
to generate a texture signature represented by the number of clus-
ters and their weights.

The Cartesian Hermite transform was firstly introduced in
digital image processing by Martens (1990). It is a local
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decomposition technique that expands an image into orthogonal
polynomials with respect to a Gaussian window. One of the advan-
tages of the Hermite transform over other wavelet-based methods
is that its analysis functions are similar to Gaussian derivatives.
Psychovisual evidence suggests that the Gaussian derivatives fit
the receptive field profiles of mammalian (RFP) visual systems
(Young, 1978). We can take advantage of the Hermite analysis
functions to extract visual details from textures using different
analysis orders on multi-scale or multi-resolution schemes. Fast
implementation techniques based on the Zak transform have also
been proposed for computing expansion coefficients relative to
the frame formed from Hermite functions at different spatial fre-
quencies (Gertner and Geri, 1994).

Research on the steerability of the Cartesian Hermite coeffi-
cients has found that the steered Hermite transform (van Dijk
and Martens, 1997; Silvan-Cardenas and Escalante-Ramirez,
2006; Martens, 2006), is an efficient way to compactly describe im-
age features into a smaller number of coefficients than the Carte-
sian Hermite transform. Moreover, since the steering direction
depends on the local maximum energy, it is possible to obtain im-
age descriptors invariant to the image orientation. This method
presents an advantage over classical filter bank design because in
the latter a fixed number of orientations for the analysis have to
be selected.

Previous works related to the use of the Hermite transform to
extract texture features have proposed a Gabor-like Hermite model
(Rivero-Moreno and Bres, 2003). It has been tested in denoising
and indexing experiments (Bres et al., 2005; Eglin et al., 2007)
using the Hermite analysis filters tuned at fixed number of orien-
tations. Others have used the steered Hermite transform for tex-
ture retrieval (Estudillo-Romero and Escalante-Ramirez, 2009).
However, in these works there is no discussion on the classification
effects in vector dimensionality reduction, nor on the kind of tex-
ture features that better classify textures.

In our proposal, visual image details are extracted regardless
the orientation by steering the Cartesian Hermite coefficients on
the direction of local maximum energy. We evaluate the classifi-
cation accuracy of some of the different texture features reported
in the literature. Dimensionality reduction of the feature set is
also a main issue when implementing filter banks. A disadvantage
of the feature selection strategy in (Chu and Chan, 2009) is that
this is performed after the classification stage by selecting the
features that give the highest correct classification rate (CCR).
The method employed in (Celik and Tjahjadi, 2011) for dimen-
sionality reduction of the feature vectors is based on principal
components analysis (PCA). However, every principal component
obtained from the PCA is a linear combination of the whole ele-
ments in the feature vector. This represents a disadvantage since
frequently filter based methods require to reduce the number of
filtering operations during the classification stage. Moreover, after
a PCA transformation, the feature elements in the original feature
space which better discriminate a given texture are still un-
known. The proposed strategy in the present method is to obtain
the most discriminant filter indexes from the training dataset
using the augmented variance ratio (AVR) and then use these fil-
ters to perform testing with the texture features obtained with
the selected filters. This represents an advantage in real vision
system implementations. Evaluation of the CCR was performed
using two distance metrics.

Section 2 summarizes the Hermite transform theory for one and
two dimensional signals. In Section 3 the steered Hermite trans-
form is presented. We analyze and compare with the Gabor model
some common rotation-invariant features in Section 4. In Section 5
we explain the pipeline of our proposal. Experimental setups and
results are reported in Section 6 and finally, conclusions are given
in Section 7.

2. Cartesian Hermite transform

2.1. One dimensional case

For the one dimensional case, a polynomial transform Ln(x) is a
local decomposition technique in which an input signal L(x) is
localized through a window V(x) and then expanded into orthogo-
nal polynomials Gn(x) at every window position (Martens, 1990):

Lnðx0Þ ¼
Z
x
LðxÞGnðx0 � xÞV2

nðx0 � xÞdx ð1Þ

The Hermite transform arises when Gn are the Hermite polynomials
Hn(x), given by Rodrigues’ formula (Abramowitz and Stegun, 1965):

HnðxÞ ¼ ð�1Þnex2 d
ne�x2

dxn
; n ¼ 0;1;2; . . . ð2Þ

and the orthogonal window corresponds to a Gaussian window (a
Gaussian-weighted window can be found in (Yang and Reeves,
1995)):

VðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

p
r

p � e�x2=2r2 ð3Þ

Following (1), the expansion coefficients Ln(x) can be derived by
convolution of the signal L(x) with the Hermite analysis functions
dn(x), which are given in terms of the window and Hermite polyno-
mials as:

dnðxÞ ¼ ð�1Þnffiffiffiffiffiffiffiffiffi
2nn!

p � 1
r

ffiffiffiffi
p

p Hn
x
r

� �
e�x2=r2 ð4Þ

2.2. Two dimensional case

Generalization of the Hermite analysis functions to two dimen-
sions can be easily extended, since the analysis functions have the
property of being both spatially separable and rotationally sym-
metric. We then can write the two dimensional analysis functions
as:

dn�m;mðx; yÞ ¼ dn�mðxÞdmðyÞ ð5Þ
where n �m and m denote the analysis order in x and y direction
respectively. As a result, we can expand a given input image
L(x,y) into the basis dn-m,m(x,y) as:

Ln�m;mðx0; y0Þ ¼
Z
x

Z
y
Lðx; yÞ � dn�m;mðx0 � x; y0 � yÞdxdy ð6Þ

for n = 0,1, . . .,1 and m = 0, . . .,n.

2.3. Frequency domain

The Hermite analysis functions in the Fourier domain can be
written as:

d̂n�m;mðxx;xyÞ ¼ ð�jxxrÞn�mð�jxyrÞmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðn�mÞ!m!

p � d̂0;0ðxx;xyÞ ð7Þ

where

d̂0;0ðxx;xyÞ ¼ e�r
2 x2

xþx2
yð Þ=4 ð8Þ

corresponds to a 2D Gaussian with scale parameter r. The center
frequency and the frequency bandwidth are related to the deriva-
tive order and the scale of analysis of the Hermite analysis function
respectively. From Eq. (7) we see that the analysis of the image at
different frequencies can be performed by increasing the order of
the Hermite analysis function. Also from Eq. (8) we observe that
increasing of the spread r on the spatial domain reduces the spatial
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frequency coverage of 2D Gaussian on the Fourier domain which is
suitable for analysis of low frequencies and vice versa. In fact, the
relationship is given by (xr)2 = 2n. Therefore, the frequency band-
width and the spatial scale parameter are inversely proportional. In
this way, the behavior of an image decomposition with a set of Her-
mite analysis functions of increasing order and at different scales
resembles the systematic analysis used in common wavelet
schemes. This property can be used to detect patterns at a given
scale of analysis. Such patterns give information about the charac-
teristics of the texture under analysis.

3. Steered Hermite transform

A steerable filter is described as a class of filters in which a filter
of arbitrary orientation is synthesized as a linear combination of a
set of basis filters (Freeman and Adelson, 1991). Since all Hermite
analysis filters are polynomials times a radially symmetric window
function, rotated versions of a filter of order n can be constructed
by taking linear combinations of the original filters of order n. In
this way, a more general expression of the original Ln-m,m Cartesian
Hermite coefficients can be written in terms of the orientation
selectivity h (Silvan-Cardenas and Escalante-Ramirez, 2006):

Lhn�m;mðx0; y0; hÞ ¼
Xn
k¼0

Ln�k;kðx0; y0Þan�k;kðhÞ ð9Þ

which has been named the steered Hermite transform in (van Dijk
and Martens, 1997). The terms an-m,m(h) are the Cartesian angular
functions of order n which give such orientation selectivity and
are defined as:

an�m;mðhÞ ¼
ffiffiffiffiffiffi
Cm
n

q
cosn�mðhÞ sinmðhÞ ð10Þ

where C corresponds to a binomial window which approximates
the discrete Gaussian window.

We can write the local energy in terms of the steered Hermite
coefficients as:

EN ¼
XN
n¼0

Xn
m¼0

½Ln�m;m�2 ¼
XN
n¼0

Xn

m¼0

½Lhn�m;m�2 ð11Þ

for all NP 0.
In natural images, many of the image details that are of prime

importance, such as edges and lines, can be locally described as
one-dimensional patterns, that is, patterns that vary only in one
direction (and are constant along the orthogonal direction). One
may distinguish 1D local energy terms and 2D local energy terms.
Thus, we can split local energy of (11) up to order N as:

EN ¼ ½L0;0�2 þ E1D
N þ E2D

N ð12Þ
where L0,0 represents the DC Hermite coefficient and

E1D
N ¼

XN
n¼1

Lhn;0
h i2

ð13Þ

E2D
N ¼

XN
n¼1

Xn

m¼1

Lhn�m;m

h i2
ð14Þ

One of the objectives when steering coefficients is to maximize
detection of patterns along a given local direction h. In this way,
(van Dijk and Martens, 1997; Silvan-Cardenas and Escalante-Ramir-
ez, 2006; Martens, 2006) propose strategies in which h is selected
such that E1D

N is maximized. As a consequence, compaction of the
energy of the Cartesian Hermite coefficients can be efficiently
achieved. One of such strategies is to take the orientation angle be-
tween the vertical and horizontal first order Cartesian Hermite coef-
ficients which approximates the direction of the maximum energy
on the decomposition. In our proposal a multi-resolution

decomposition requires h to be computed at each resolution level.
In this way h contains directionality of coarse structures at low res-
olution levels.

4. Rotation-invariant features

As stated before, the orientation angle between the vertical and
horizontal first order Cartesian Hermite coefficients approximates
the direction of local maximum energy on the decomposition.
Moreover, an auxiliary function named angular function that is
based on such directional information is used to weight the Her-
mite Cartesian coefficients in order to obtain a rotation-invariant
coefficients set. Therefore, the steered Hermite transform pre-
sented in the previous section is suitable to extract rotation-invari-
ant texture features such as energy and second order statistics.

In this section we present visual and numerical examples of
such rotation-invariant texture features and compare with a com-
mon approach using Gabor wavelets. In fact, both models have
been used to describe the RFP. These models involve Gaussian
functions in some form to perform smoothing and effectively local-
ize a signal (Gertner and Geri, 1994).

We considered rotated versions of an input image. Note that the
original information can not be completely preserved due to

Fig. 1. Rotation of an input texture and its 1D steered Hermite coefficients for n = 1
and n = 2. Input texture corresponds to a region from the VisTex texture Bark0000
VisTex, 2002. The input texture has been rotated to show that the same visual
information is preserved and obtained by means of the steered Hermite transform.
From the top to the bottom counterclockwise rotating angles are 0�, 17�, 45�, 65�
and 120�.
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cropping and the method that was used to rotate the input image.
We have assumed that illumination conditions were preserved
during the rotation process.We aim to show the intra-variability
of the texture features between the various rotated versions of
the same input texture that were computed from the steered Her-
mite coefficients.

Fig. 1 shows the input texture and its first and second order
steered Hermite coefficients. From the top to the bottom counter-
clockwise rotating angles are 0�, 17�, 45�, 65� and 120�. First and
second order coefficients, shown in the middle and right columns
respectively, have the same perceptual information content in all
the rotated versions of the texture.

Another method that has been popular for texture analysis in-
volves the use of Gabor wavelets. Similar to the Hermite transform,
the Gabor wavelet is a biologically-inspired vision model. A Gabor
function on the spatial domain is a 2D Gaussian modulated sinu-
soid with aspect ratio of rx/ry and radial center frequency F:

Gðx; y;rx;ry; F; hÞ ¼ 1
2prxry

e
�1

2
x2r
r2x

þy2r
r2y

� �
� eðj2pFxrÞ ð15Þ

where the Gaussian function and the complex sine grating share the
same orientation (Bovik et al., 1990) given by:

xr
yr

� �
¼ cos h sin h

� sin h cos h

� �
� x

y

� �
ð16Þ

To simplify notation, from now on we will refer to a Gabor function
Eq. (15) as G(x,y,h). The design of a Gabor family is constrained to
parameters such as: central frequency, orientation selectivity, fre-
quency and angular bandwidths. A comprehensive filter design
can be found in (Clausi and Ed Jernigan, 2000).

A common approach in texture analysis is to filter an input tex-
ture with a family of Gabor functions whose filters at each analysis
frequency of increasing frequency bandwidths are tuned to differ-
ent orientations. In order to cover the spatial frequency plane, the
analysis is performed in octave steps and with minimal degree of
overlap between the spatial frequency coverage of the filters. In or-
der to obtain rotation invariance the filtered images with the dif-
ferent oriented filters are then added at each octave thus
obtaining a more compact set of filtered images:

Fh
imðx; yÞ ¼

XK�1

k¼0

Im ðLðx; yÞ H Gðx; y; hkÞÞ½ � ð17Þ

Fh
reðx; yÞ ¼

XK�1

k¼0
Re ðLðx; yÞ H Gðx; y; hkÞÞ½ � ð18Þ

where K is the number of discrete orientations of the filter bank and
w means convolution of the input image L(x,y) with the filter
G(x,y,hk). Typical texture features such as energy, mean and stan-
dard deviation are obtained from the compact filtered images for
each octave and for both imaginary and real parts of the filtered
images to form the feature vector.

Fig. 2 shows the Gabor expansion coefficients of an input tex-
ture that has been rotated for several angles. From the top to the
bottom counterclockwise rotating angles are 0�, 17�, 45�, 65� and
120�. The imaginary Gabor filtered textures (in the middle) and
the real Gabor filtered textures (right column), were obtained from
addition of their corresponding oriented bands. A first visual
inspection of the filtered outputs suggests that it is not possible
to extract the same information provided by the steered Hermite
transform through this scheme.

Numerical computation of commonly used features such as en-
ergy, mean, and standard deviation were also performed for both
models. Tables 1 and 2 show the features computed through the
Hermite and Gabor models respectively. The variation coefficient
for each feature (energy, mean and standard deviation), computed

Fig. 2. Rotation of an input texture and its imaginary and real Gabor expansion
coefficients. Input texture corresponds to a region from the VisTex texture Bark0000
VisTex, 2002. The input texture has been rotated and filtered with four Gabor filters.
From the top to the bottom counterclockwise rotating angles are 0�, 17�, 45�, 65�
and 120�.

Table 1
Rotation-invariant features extracted from steered Hermite Coefficients. Energy
feature values are given � 103. Last column shows the betweenness class variation
coefficient (cv).

Table 2
Rotation-invariant features extracted from Gabor coefficients. Energy feature values
are given� 103. Last column shows the betweenness class variation coefficient (cv).
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from the steered coefficients of the rotated versions of the same
texture, represents the betweenness class variation and is defined
as:

cv ¼ rf

lf
ð19Þ

where rf and lf are the standard deviation and mean for each fea-
ture f respectively. The variation coefficient is shown in the right
most column on both Tables 1 and 2. The slight numerical variation
between the same features for all rotated versions of the input tex-
ture indicates that the extracted features from steered Hermite
coefficients are robust to the texture orientation. These results sug-
gest that the steered Hermite model better extracts and preserves
not only visual but numerical information compared to the features
extracted using Gabor wavelets. It has been shown in previous
works that the steered Hermite transform-based features outper-
formed average retrieval rates of Gabor-based texture features
(Estudillo-Romero and Escalante-Ramirez, 2009).

5. Proposed methodology

The pipeline of the proposed methodology is presented in Fig. 3.
Our methodology first includes estimation during the training
stage of those steered Hermite analysis filters which offer better
discrimination power. The purpose is to obtain a similar or even
better classification performance by using a small set of steered
Hermite analysis filters during the testing set. Classification is per-
formed with the k-NN classifier. We evaluate classification perfor-
mance using two distance metrics.

5.1. Features and filter selection

We evaluated our methodology with several features found in
the literature:

1. Mean, l
2. Standard deviation, r
3. Energy features

E0 ¼
XM
x¼1

XN
y¼1

½Lhn;0�2 ð20Þ

E1 ¼ E0

M � N
ð21Þ

E2 ¼ 1
M � N

XM
x¼1

XN
y¼1

jLhn;0j ð22Þ

E3 ¼ 1
M � N

XM
x¼1

XN
y¼1

ffiffiffiffiffiffiffiffiffiffi
jLhn;0j

q
ð23Þ

Because testing datasets are bigger than training datasets, by
finding optimal filters during the training stage we can obtain the
same or even improve discrimination performance and reduce
computational cost during the testing stage at the same time that
the feature dimension of our descriptor decreases. This strategy
may be useful in an on-line real-time system performing texture
classification tasks.

Since the texture characteristics are unknown, we propose to
extract texture features using an overcomplete decomposition dur-
ing the training stage. In order to select a subset of the optimal fil-
ters it is necessary to process each training texture with a full
Hermite decomposition followed by a steering transformation of
the Cartesian Hermite coefficients. In this work we extract several
texture features from the steered Hermite coefficients to generate
a feature vector for every single feature.

A texture feature vector xi is obtained by concatenating the fea-
ture that is extracted from each steered Hermite coefficient 1 6
n 6 N up to order N at every scale of analysis s, where 0 6 s 6 S-
1 and S represents the number of scales:

xi ¼ f ð0Þ1 ; f ð0Þ2 ; . . . ; f ð1Þ1 ; f ð1Þ2 ; . . . ; f ðS�1Þ
N

h i
ð24Þ

Once the feature vectors (with dimension of S � N) have been
obtained for each texture in the training texture set, these are ar-
ranged in a feature matrix as:

FX ¼

x1;1 x1;2 � � � x1;n
x2;1 x2;2 � � � x2;n

..

. ..
. ..

. ..
.

xm;1 xm;2 � � � xm;n

2
66664

3
77775 ð25Þ

where xm,n represents the feature n of the vector xm. The augmented
variance ratio (AVR) (Liu et al., 2004) has shown to provide a quan-
titative basis to separate non-discriminative features before feature
subset selection. The AVR is defined as:

AVRðFÞ ¼ VarðSFÞ
1
C

P
i¼1::C

VariðSF Þ
mini–jðjmeaniðSF Þ�meanjðSF ÞjÞ

ð26Þ

where Var(SF) is the cross-class variance of feature F, Vari(SF) and
meani(SF) are the within-class variance and mean of the feature F
for class i out of C distinct classes. Similar to Fisher criterion, AVR
represents the ratio of cross-class variance of the feature over with-
in-class variance, with added penalty to features that have close in-
ter-class means.

By ranking the elements of the feature vectors with high AVR
ratios it is possible to know the indexes of the filters that were used
to obtain such features. This represents a way to obtain a similar or
even better classification accuracy with a reduced number of fea-
ture elements. Filter selection to extract testing texture features
is a straightforward procedure.

5.2. Classifier

The final stage in our pipeline (Fig. 3) is classification. In this pa-
per we evaluated classification accuracy based on the k-NN classi-
fier using two distance metrics. The k-NN classifier consists in
assigning a class label to a sample vector based on the mode of
its k nearest neighbors vectors. Given two feature vectors x and y
of n features, the Euclidean distance is defined as:

dEðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

ðxj � yjÞ2
vuut ð27Þ

Fig. 3. Texture analysis scheme using the steered Hermite transform and dimen-
sionality reduction via feature selection.
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and the Canberra distance as:

dCðx; yÞ ¼
Xn

j¼1

jxj � yjj
jxjj þ jyjj

ð28Þ

6. Experimental setups and results

In order to investigate the classification performance using a re-
duced set of texture features obtained via AVR, we individually
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Fig. 4. CCR using (a) Mean, (b) Standard deviation, (c), E0, (d) E1, (e) E2, (f) E3 for experiment Section 6.2.
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computed the CCR of several features presented in Section 5.1. For
all the experiments the training textures were analyzed at S = 4
decomposition levels with the steered Hermite transform up to or-
der N = 8, yielding a feature vector of 32 arranged elements as
shown in Eq. (24). AVR produced a rearranged vector of the feature
elements ranked in order of importance. Evaluation of the effects in
feature dimensionality was performed by computing the CCR by
successive increments of the vector dimension.

6.1. Datasets

1. Brodatz (1966) database. The Brodatz database contains little
intra-class variability. However, some textures appear very sim-
ilar up to a scale change. Most images in the Brodatz dataset
have a constant texture pattern in the entire image area (except
some textures such as: D7, D43, D44, D45, D97). In our experi-
ments we include such textures to increase the intra-class var-
iability and decrease the inter-class variability.

2. VisTex VisTex (2002) database. This database contains real
world texture images, some of them with different objects in
the scene generating intra-class variation.

3. The UIUC database (Lazebnik et al., 2005) contains photo-
graphic textures with varying local affine transformations,
caused by perspective transformations and no homogeneous
areas due to defocusing. This characteristics generate a texture
database with high intra-class variations. It consists of 25 clas-
ses, each one containing 40 image samples.

6.2. Experimental setup I

We used 112 texture images of 512 � 512 pixels from the Bro-
datz texture album. A training texture set was formed from 16 sub-
images of 128 � 128 pixels without overlap and rotated 0 radians
which gives 16 training textures per texture class. For the testing
texture set, each original texture of 512 � 512 pixels was first arti-
ficially rotated from p/18 to 16p/18 radians with incremental step
size of p/18 radians. For each rotated texture 4 sub-images of
128 � 128 without overlap were selected in such a way that the
sub-images had minimal overlap between the different rotated
versions. Finally, the training and the testing texture sets consisted
of 400 images and 1600 images respectively (20% for training and
80% for testing, (Jafari-Khouzani and Soltanian-Zadeh, 2005)).

Classification results for each texture feature are depicted in
Fig. 4. It was found that the average classification performance,
once an optimal rate has been reached, tends to be constant de-
spite the number of features. Both distance metrics performed
well in average for all the features. Better results were obtained
with the features l, r, E2 and E3. Low CCRs were observed due
to the high intra-class variability that was introduced by regions
of textures containing no information or that were not
homogeneous over the entire texture images and also by little
inter-class variability. Fig. 5 shows texture samples belonging
to different classes ((a) and (b)) and to the same class ((c) and
(d)).

6.3. Experimental setup II

In this experiment we used the fifty-four 512 � 512 gray-scaled
texture classes from VisTex database (VisTex, 2002) that were used
in (Pan et al., 2008). Each original image was divided into 16
128 � 128 non-overlapping sub-images, comprising a training
database of 864 (54 � 16) images. To create the testing set, each
original texture image was rotated at angles ranging from 10� to
160� and 10� increments. From the center of each rotated image,
four non-overlapping sub-images were extracted. Therefore, a total
of 3840 (60 � 16 � 4) testing images were obtained.

We performed classification experiments using only one kind of
texture feature at a time. Classification results for each texture fea-
ture are depicted in Fig. 6. Similar to Fig. 4, classification perfor-
mance remains constant after the optimal rate was found,
regardless the features number. Measuring 16-dimension feature
vector similarities with the Euclidean distance showed that r, E2
and E3 have better CCR than the l, E0 and E1. However, similarity
measures using the Canberra distance with the same number of
vector elements showed in average (84.81%) better CCR for all
the features than using the Euclidean distance (80.76%). It is inter-
esting to note the high CCR obtained with only 16 feature ele-
ments. Other methods tested with the same dataset and
experimental setup reported correct classification percentages of
98.9% with correlation distance of the Radon projections (Wang
et al., 2010) and 96.82% with the Ridgelet transform (Pan et al.,
2008). They employ high dimensional feature vectors and involve
many free parameters.

6.4. Experimental setup III

The classification experiment consists of removing a number Ntr

of training samples from the databases and then using these to
classify the remaining textures. In this experiment, the UIUC data-
base was used. For each texture class we randomly selected 80 sets
of Ntr training samples. Evaluation with many randomly selected
training sets are required to minimize the classification depen-
dance on the training set. In order to evaluate the CCR as a function
of the number of training samples, Ntr ranges from 1 to 20 training
samples. For each Ntr we computed the average CCR from all the
classification scores obtained from the 80 random training set
selections.

Classification results using the Canberra similarity measure are
depicted in Fig. 7. We obtained the CCR for every single texture fea-
ture. We also evaluated classification accuracy as a function of the
vector feature dimension. In all cases, except by the features l and
E0, the dimension increment of the feature vector slightly improves
the CCR. The best CCR was obtained with the l feature. The CCRs
using the Euclidean similarity measure are shown in Fig. 8. In al-
most all the cases, better performances were obtained with the
Canberra distance based measure.

Fig. 5. Texture samples from the Brodatz database used to illustrate inter and intra-
class variations. Textures (a) and (b) belong to different texture classes whereas (c)
and (d) belong to the same texture class.
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6.5. Experimental setup IV

In this experiment the same experimental setup from Experi-
ment Section 6.4 was used. In previous experiments we found that

the texture features based on the mean, standard deviation and en-
ergy (E3) of the steered Hermite coefficients performed better than
the remaining texture features. In order to improve classification
accuracy we combined [l,r], [l,E3], [r,E3] features for the n = 8,
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Fig. 6. CCR using (a) Mean, (b) Standard deviation, (c), E0, (d) E1, (e) E2, (f) E3 for experiment Section 6.3.
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16 and 32 most important features obtained during the training
stage by means of the AVR (see Section 5.1). The mixed feature vec-
tors were of 16, 32 and 64-dimension. Classification results are

depicted in Figs. 9–11. In order to combine texture features, since
one of the objectives is to reduce the number of filters used during
the testing stage, selection of filters is performed by analysing the
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Fig. 7. CCR using (a) Mean, (b) Standard deviation, (c), E0, (d) E1, (e) E2, (f) E3 and the Canberra based distance for experiment Section 6.4.
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most significant common features between both AVR-ranked fea-
ture vectors.

From the experimental results we observed that best classifica-
tion performance was achieved by combining the texture features
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Fig. 8. CCR using (a) Mean, (b) Standard deviation, (c), E0, (d) E1, (e) E2, (f) E3 and the Euclidean based distance for experiment Section 6.4.
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l and r. The second best classification performance was observed
by combining l and E3. The Canberra distance measure gives the
best classification performances for 32 and 64-dimension feature
vectors. Moreover, it was observed that good classification perfor-
mances can be obtained by using only 16 steered Hermite coeffi-
cients (note that the mixed 32-dimension feature vector was
generated from two 16-dimension feature vectors). The combina-
tion r and E3 showed the worst classification performances and lit-
tle differences were found using the Canberra and Euclidean
distances for all the 16, 32 and 64-dimension feature vectors.

It was also interesting to show the filter indexes for mixed 16
and 32-dimension feature vectors that were used during the test-
ing stage. We present these indexes as histograms generated from
all the random training sets for the three combination cases. Fig. 12
shows the histograms of the filter indexes. The filter indexes are
ordered from 1 to 32 possible filters (S = 4 scales of analysis and
N = 8 is the maximum order of the Hermite decomposition) such
that a filter index = 11 represents a steered Hermite coefficient
with parameters s = 2 and n = 3. A steered Hermite coefficient with
parameters s = 4 and n = 7 is represented by a filter index = 31. As
shown in the histograms of Fig. 12, the firsts orders of the steered
Hermite coefficients at each scale of analysis give the most impor-
tant features with few exceptions especially when the dimension
of the mixed feature vector is increased. Preference for the first
steered Hermite coefficients indicates that the frequency filter re-
sponses are overlapped. This result is supported by recent research
which suggests that a certain amount of superposition between the
frequency filter responses could improve classification (Bianconi
and Fernandez, 2007).

Table 3 shows CCR comparisons of different methods on the
UIUC database using only Ntr = 12 training images. One of the most
robust methods reported in the literature (Zhang et al., 2007) ob-
tained an average CCR about 97% whereas by combining the tex-
ture features l and r we obtained from 16 and 32 steered
Hermite analysis filters obtained an average CCR about 85%, see Ta-
ble 3. A fair direct comparison is not possible yet since authors in
(Zhang et al., 2007) have made intensive experiments in order to
find optimal values for their free parameters including: invariance
levels on the datasets, selection of the best detector/descriptor
combination, evaluation of SVM with different kernels, different
signature sizes. Moreover, one of the main differences between
both methods is that ours provides a texture descriptor whereas

the method in (Zhang et al., 2007) provides an image descriptor
since it combines detectors and texture descriptors. Indeed, the
presented method avoids exhaustive experiments in order to find
many optimal parameters influenced by a particular dataset, in-
stead, it only estimates optimal filter indexes during the training
stage and use small feature vectors. Nevertheless, we obtained bet-
ter CCRs compared with previous methods involving Gabor wave-
lets (Manjunath and Ma, 1996) and MRF models (Varma and
Zisserman, 2003).

7. Conclusions

In this paper we presented and exploited some of the properties
of the steered Hermite transform to analyze and then classify a
texture image regardless its orientation. Texture feature extraction
was performed by considering visual information by means of the
analysis functions of the Hermite transform. Visual details were
then locally described as one-dimensional patterns by steering
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the Cartesian Hermite coefficients. In this method, rotation invari-
ance was achieved by steering the basis coefficients to locally

maximize the energy and then represent such visual features with
less number of coefficients.
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Fig. 12. Histograms of the filter indexes. (a) and (b) for a mixed 16 and 32-dimension feature vector respectively combining l and r. (c) and (d) for a mixed 16 and 32-
dimension feature vector respectively combining l and E3. (e) and (f) for a mixed 16 and 32-dimension feature vector respectively combining r and E3.
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We evaluated classification accuracy with several kinds of tex-
ture features that were computed from each steered Hermite coef-
ficient. Moreover, we showed that in most cases, the number of
analysis filters can be significantly reduced and obtain almost the
same Average CCRs.

An interesting finding in this work is that the feature dimension
reduction based on the AVR showed that most of the textural dis-
crimination power using the steered Hermite transform is in the
first Hermite analysis orders. In other words, the overcomplete im-
age representation obtained with the first successive orders of the
Hermite transform increases classification accuracy.

We also observed an increase in the CCR when mixing features.
However, further research is required on the combination of tex-
ture features and on filter selection strategies. The selection of
appropriate distance metrics (every feature represents a different
energy measure) to compare similarities is also an exploration area
in future works.
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